Archiv der Kategorie: Entomology

DiversityScanner – AI-based robotics assist with the discovery of small invertebrates

Biodiversity studies that analyse large numbers of specimens are being published at an unprecedented scale. The study objects, primarily insects, are often obtained using Malaise traps. The traps were invented by the Swedish entomologist Rene Malaise to collect sawflies, but they are very efficient for other insects, in particular flying insects like Diptera and Hymenoptera. Since the traps operate 24/7, they are able to collect enormous amounts of specimens ranging from hundreds to thousands of specimens during a collecting period of 1-2 weeks for a single trap. With multiple traps placed in a habitat to account for local variation, that operate for several seasons to account for temporal variation in insect diversity and abundance, a near-to-complete sample of the species diversity of insects at particular location can be obtained.

Soup in a soup – a typical Malaise trap sample contains thousands of insects, mainly Diptera and Hymenoptera. Stefan Schmidt – ZSM.

The analysis of organisms from Malaise trap samples primarily requires two major steps, the separation of individual specimens from bulk samples, containing thousands of often small-sized insects like tiny parasitoid wasps or flies and midges. A second step is their identification, i.e. the assignment to known species. Traditional procedures and techniques that try to cope with insects and other arthropods from Malaise trap samples suffered from the problem of scalability, and allowed only to utilize a small fraction of specimens (and therefore species). Any attempt to fully explore the diversity would be doomed by the sheer quantity of insects, even from only a single bulk sample. Apart from the labour required for processing, the vast majority of specimens in a sample, in particular megadiverse groups like Diptera Hymenoptera, cannot be assigned to a known species due to the severe lack of taxonomists. This is even the case for countries like Germany with a taxonomic history of over 200 years, and in certain groups of Diptera hundreds or even thousands of species still await discovery and documentation (link to article in German).

DNA barcoding for biodiversity discovery and monitoring

For the identification of unknown specimens of animals and for the discovery of unknown species, DNA barcoding has become the de-facto standard. And the method is scalable. The Centre for Biodiversity Genomics in Guelph, Canada, has been processing about 10 million specimens of over 700,000 species worldwide. A new global project, called BIOSCAN, aims at barcoding 10 million specimens and assembling barcode coverage for two million species. Other technological approaches set out to simplify the sequencing process by minimizing required lab equipment and costs, thus lowering the threshold for using DNA barcoding as the method of choice for species identification, discovery, and monitoring, requiring a minimum of resources and expertise.

While sequencing technology continues to advance at a fast pace, preparing specimens from bulk samples still poses a major obstacle in large-scale biodiversity projects that employ mass-collecting devices like Malaise traps. Attempts to circumvent the problem exist, namely metabarcoding, but the method has several drawbacks, including incomplete coverage due to primer bias and/or due to low DNA concentrations of rare species. 

DiversityScanner – automated sorting of smaller insects using artificial intelligence methods

Image of a darwin wasp (Hymenoptera: Ichneumonidae) with heatmap overlay showing body parts relevant for classification, Karlsruhe Institute of Technology – KIT

Sorting specimens from Malaise trap samples is extremely labour intensive and requires the expertise of trained taxonomists. Since this problem is still a key issue with any large-scale biodiversity project, entomologists and machine learning specialists teamed up to remedy the situation. The biodiversity researcher Rudolf Meier from the Museum für Naturkunde in Berlin and the group of Christian Pytuliak from the Karlsruhe Institute of Technology developed, in collaboration with entomologists from the Zoologische Staatssammlung München and the Sapienza University of Rome, developed ‘DiversitScanner’, a robot for the automated sorting of small insects into different classes using artificial intelligence. 

The DiversityScanner is able to pick individual insects from samples and photograph them. A computer then uses a type of artificial intelligence known as machine learning to compare the wings, antennae, legs, and other characters of each individual to known specimens. The warmer the color, e.g. red, the more important the body parts are for the identification. In a further step, each insect is individually transferred to a plate with 95 wells. The samples can then be genetically analyzed, whereby a “DNA barcode” is generated for each insect, which is then compared with known species in a public reference database.

Parasitoid wasp of the family Diapriidae (Hymenoptera). Original image left and same image right with heatmap overlay. Karlsruhe Institute of Technology – KIT

The accuracy of the robot currently is around 91%, i.e. about 9 out of 10 insects are correctly classified. According to the researchers, who recently published their study on the preprint server bioRxiv, the accuracy can be improved if more samples are available for training the robot. The diversity scanner software and 3D printing plans have been made publicly available.

DiversityScanner

A sorting lab of the future? Sorting and identifying specimens from Malaise trap samples is laborious and time consuming, a task that can be automated with the DiversityScanner. Karlsruhe Institute of Technology – KIT.

One major advantage of the DiversityScanner is its scalability. It therefore addresses one of the major problems of biodiversity studies that deal with large quantities of specimens and species, including many insects that cannot be assigned to any known species, either because of lack of taxonomic expertise or because specimens belong to species that are still awaiting discovery. Identification of organisms through DNA barcoding has become quick, reliable and inexpensive. The DiversityScanner holds great promise for expediting the task of sorting at a similar scale.

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

 

References

Wührl L, Pylatiuk C, Giersch M, Lapp F, von Rintelen T, Balke M, Schmidt S, Cerretti P, Meier R (2022) DiversityScanner: Robotic handling of small invertebrates with machine learning methods. Molecular Ecology Resources 22: 1626–1638. https://doi.org/10.1111/1755-0998.13567

Science News (4 June 2921): Artificial intelligence could help biologists classify the world’s tiny creatures. doi:10.1126/science.abj8374

Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, Hausmann A, Hendrich L, Regalado L, Rulik B, Schmidt S, Wägele J, Hebert PDN (2019) A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding‐based biomonitoring. Molecular Ecology Resources 19: 900–928. https://doi.org/10.1111/1755-0998.13022

Stefan Schmidt – ZSM

A drawer showcase: high-resolution images of historic insect collections

High-resolution images of insect drawers

High-resolution images of the insect drawers from natural history collections allow public visual access to the collection, which is normally reserved for visiting scientists. The images and accompanying data enable scientists to easily determine the extent and composition of entomological and other collections. In some cases, the labels provide information on the collecting circumstances, such as the location and date, and the high resolution of the photos makes it possible to examine differences between species and variation within species. This information enables scientists to take this data into account as early as the planning phase of projects. In addition, the images provide the foundation for the development of new research approaches in relation to image analysis and AI aided approaches, e.g. to obtain information on the species composition in certain regions and at certain times. It is foreseeable that future images archives of natural history collections will help establish new research approaches and fields of research. Due to the high level of personnel and financial expenditure, this data could only be obtained to a very limited extent so far. High-resolution images of insect boxes represent an efficient, fast, and inexpensive method to open up the enormous, but so far relatively little used information content of entomological collections.

The insect collection of E. Enslin

Front page Enslin’s “Tenthredinoidea Mitteleuropas” a comprehensive identification key to the Symphyta of Central Europe.

Eduard Enslin was a naturalist and ophthalmologist who, as an entomologist, made important contributions to the taxonomy and systematics of the Hymenoptera, especially the sawflies (Symphyta), and later also the bees and wasps (Aculeata), especially at the beginning and middle of the last century. His most important work is “Die Tenthredinoidea Mitteleuropas”, a comprehensive identification key to the sawflies and woodwasps of Central Europe that has long been THE standard on Symphyta and that is still used by entomologists today.

Enslin became known not only for his pioneering work on Symphyta, but also for his extraordinary versatility in the field of biology. His academic legacy includes four books and over 100 articles, mostly in scientific journals, with over 50 articles on the systematics, taxonomy, fauna and flora of Symphyta.

The importance of the estimated 8000 species collection lies not only in the abundance of species, but also in the fact that the insects were collected in places that today, for the most part, no longer exist. The collection location Enslin visited cover a wide spectrum, and in addition to Central European countries, he collected in the Mediterranean area, the Pannonian Basin and the Balkans. His favorite collecting spots were in the Allgäu, Valais and in South Tyrol.

The Enslin collection is deposited in the Zoologische Staatssammlung München , where it forms the basis for one of the world’s most important Hymenoptera collections, alongside the important collections by Förster, Hartig and Kriechbaumer.

A part of the collection is still in the original drawers. These drawers have been photographed using a high-resolution imaging system. The examples below show drawers of the Enslin collection that is hosted in the Zoologische Staatssammlung München. Each thumbnail images links to zoomable high-resolution version of each drawer image. For more images from drawers of the Enslin collection see the pages of the Hymenoptera section of the ZSM.

Camera system

Phase One XF IQ4 150MP with Schneider-Kreuznach 120 mm LS f/4.0 Macro lens.

The photos of the insect drawers were taken with a Phase One XF with IQ4-back. The medium format sensor with 150 million pixels delivers, due to its resolution, dynamic range and richness of detail, an image quality that was previously only achievable with complex stitching technology. In addition, the camera offers a stacking function to overcome the low depth-of-field in close-up photography. To the camera body, a Schneider-Kreuznach 120 mm LS f / 4.0 macro lens is attached for maximum image quality.

The full set of high-resolution images of the Enslin collection can be viewed on the collection pages of the ZSM Hymenoptera Section.

Neue Online-Galerie für Hautflügler geht online

Die südeuropäische Biene Rhodanthidium sticticum beim Blütenbesuch

Die südeuropäische Biene Rhodanthidium sticticum beim Blütenbesuch. (Foto: Stefan Schmidt, SNSB-ZSM)

Wildbienen und andere Stechimmen sind hoch bedroht und wie viele andere Insekten stark vom Artenrückgang betroffen. Um diese Tiere schützen zu können, ist es wichtig, sie zuverlässig zu erkennen und weiteres Wissen über die Arten zu sammeln. Mit einer neuen, weltweit einzigartigen Online-Bildergalerie von Bienen, Wespen, Ameisen und anderen Hautflüglern möchte die Zoologische Staatssammlung München (SNSB-ZSM) zur besseren Artenkenntnis auch in der breiten Bevölkerung beitragen. Die Web-Galerie soll engagierte Naturliebhaber, aber auch Forscher ansprechen, um ihnen diese Insektengruppe näherzubringen und eine Identifizierung von Arten zu ermöglichen.

Die Bildergalerie speziell für Bienen, Wespen und andere Hautflügler (https://snsb-zsm.pictures) basiert auf einem neuartigen Konzept, bei dem Insektenfotografen aus dem In- und Ausland qualitativ hochwertige Digitalfotos von lebenden Insekten einreichen. Diese werden von Experten der Zoologischen Staatssammlung München (SNSB-ZSM) bestimmt und verifiziert und dienen künftig als Referenzfotos. Gleichzeitig stellen die Experten auch Bilder präparierter Exemplare aus ihren eigenen Sammlungen zur Verfügung. Ziel ist der Aufbau einer digitalen Referenzsammlung. Um die Daten auch für weitere Forschungen wie beispielsweise zum Artensterben oder Klimawandel nutzen zu können, sollen auch Funddaten miterfasst werden.

Die Pelzbiene Anthophora plumipes, hier ein Männchen, ist ein häufiger Besiedler von Gärten

Die Pelzbiene Anthophora plumipes, hier ein Männchen, ist ein häufiger Besiedler von Gärten. (Foto: Christian Schmid-Egger)

Die Website bietet damit zuverlässige Informationen zu den dargestellten Arten und erlaubt einen einzigartigen Einblick in das Leben der Bienen und Wespen anhand von Fotos. Die Galerie wächst ständig: Schon jetzt zeigt sie mehr als 3.000 Fotos von mehr als 800 Arten. In Deutschland leben insgesamt etwa 600 Bienen- und 500 andere Stechimmen-Arten. Weitere 10.000 Arten zählen zu den parasitoiden Wespen (z.B. Schlupf- und Erzwespen). Die Datenbank soll zunächst deutschlandweit, später weltweit ausgebaut werden.

Das Projekt ist eines von mehreren wissenschaftlichen Projekten mit Bürgerbeteiligung („Citizen Science“) an der Zoologischen Staatssammlung München. Die Bildergalerie ist zudem eine wichtige Ergänzung zu den Projekten zur Erstellung einer genetischen Bibliothek des Lebens anhand genetischer Kennsequenzen. Das sogenannte „DNA-Barcoding“ wird an der Zoologischen Staatssammlung München seit über 10 Jahren im Rahmen mehrerer Großprojekte betrieben, wie dem aktuellen Projekt „GBOL III: Dark Taxa“.

Kontakt

Dr. Stefan Schmidt
Zoologische Staatssammlung München (SNSB-ZSM)
Münchhausenstr. 21, 81247 München
Tel. 089 – 8107 159
E-Mail: stefan.schmidt@snsb.de

Mehr Info

www.zsm.mwn.de – Zoologische Staatssammlung München (SNSB-ZSM)
http://barcoding-zsm.de – DNA-Barcoding an der Zoologische Staatssammlung München

Neues DNA-Barcoding Projekt „GBOL III: Dark Taxa”

Neues DNA-Barcoding Projekt illuminiert die dunklen Winkel mitteleuropäischer Biodiversität

Das nationale DNA-Barcoding-Projekt „German Barcode of Life“ (GBOL) an der Zoologischen Staatssammlung München (SNSB-ZSM) geht nun in seine dritte Laufzeit (GBOL III: Dark Taxa). Am 1. Juli 2020 hat „GBOL III: Dark Taxa” begonnen. Die ZSM kooperiert hierbei mit Forschungsmuseen aus Bonn und Stuttgart, sowie der Universität Würzburg und der Entomologischen Gesellschaft Krefeld. Mithilfe von genetischen Kennsequenzen (DNA-Barcodes) sollen nun gezielt bisher unbekannte Arten, sogenannte “Dark Taxa”, in unserer heimischen Fauna aufgespürt werden. Gefördert wird das dreijährige Projekt vom Bundesministerium für Bildung und Forschung (BMBF) mit mehr als 5,3 Millionen Euro.

Mymaridae

Mymaridae – winzige parasitoide Wespen, von denen es noch viele unentdeckte Arten gibt. Foto: Stefan Schmidt

Wissenschaftler nehmen an, dass in Tiergruppen wie Insekten und Spinnentieren selbst in der heimischen Fauna noch Tausende unbekannter Arten zu entdecken sind. Besonders viele unbekannte Arten werden in der Gruppe der Zweiflügler (Fliegen und Mücken) und Hautflügler (z.B. Bienen, Wespen, Ameisen und parasitoide Wespen) vermutet. Zwei- und Hautflügler stellen mit jeweils etwa 10.000 bekannten Arten nahezu zwei Drittel der in Deutschland bekannten Insektenarten. Damit wird deutlich, welche Bedeutung allein diese beiden Insektenordnungen für die heimische Artenvielfalt haben.

“Im Gegensatz zu den Tropen gilt die mitteleuropäische Fauna eigentlich als sehr gut erforscht. Trotzdem sind viele Zwei- und Hautflügler bisher wenig erfasst. Artenkenner haben sich vor allem auf weniger artenreiche und leichter zu studierende Insekten konzentriert. Die artenreichen, taxonomisch oft schwierigen Insektengruppen wurden bisher weitgehend außer Acht gelassen”, so Dr. Stefan Schmidt, Koordinator der DNA-Barcoding-Projekte an der Zoologischen Staatssammlung München (SNSB-ZSM).

Im Rahmen von „GBOL III: Dark Taxa“ wollen die Forscher nun hauptsächlich diese Tiergruppen untersuchen. 12 Doktoranden werden über drei Jahre an der Zoologischen Staatssammlung München, dem Zoologischen Forschungsmuseum Alexander Koenig in Bonn sowie dem Staatlichen Museum für Naturkunde in Stuttgart daran arbeiten, bisher wenig oder sogar unbekannte Arten der deutschen Fauna genetisch zu erfassen und für wissenschaftliche Zwecke verfügbar zu machen. Weitere Projektpartner sind die Universität Würzburg sowie die Entomologische Gesellschaft Krefeld. Im Projekt „GBOL III: Dark Taxa“ sollen umfangreiche Methoden entwickelt werden, um die Erfassung und Identifizierung bisher unbekannter Arten in der deutschen Fauna drastisch zu beschleunigen und auch ältere Proben aus wissenschaftlichen Sammlungen für Vergleichsstudien zu nutzen. Dadurch wird eine wichtige wissenschaftliche Grundlage geschaffen, um den Rückgang der Insekten in Deutschland besser zu verstehen.

Bedrohte Artenvielfalt kennt keine politischen Grenzen: Internationales Forscherteam erfasst DNA-Barcodes europäischer Heuschrecken

Gefleckte Schnarrschrecke (Bryodemella tuberculata). Foto: O. Hawlitschek.

Wissenschaftler aus Deutschland, Österreich und der Schweiz haben in einem Kooperationsprojekt gemeinsam fast 80% der mitteleuropäischen Heuschrecken (Orthoptera) genetisch erfasst und stellen deren Gencodes in einer frei zugänglichen Online-Bibliothek zur Verfügung. Ihre Ergebnisse veröffentlichten die Forscher Anfang dieser Woche.

Zoologen aus drei Ländern und vier großen DNA-Barcoding-Initiativen haben zum weitreichenden Erfolg des Projektes beigetragen: Im Rahmen der „Barcode of Life“-Projekte aus Deutschland (BFB, GBOL), Österreich (ABOL) und der Schweiz (SwissBOL) wurden rund 750 genetische Codes, sogenannte DNA-Barcodes, von Heuschrecken erfasst, die über 120 verschiedenen Arten zugeordnet werden konnten. Dies entspricht fast 80% aller Arten in Mitteleuropa, und sogar annähernd 100% der deutschen Arten. „Für die Erforschung der Biodiversität sind solch groß angelegte Projekte unerlässlich. Nur so können wir die Artenvielfalt effektiv erfassen, und zur Erhaltung beitragen“, so der Projektkoordinator Oliver Hawlitschek von der Zoologischen Staatssammlung München. Allen DNA-Barcoding-Projekten ist eines gemeinsam: Sie verfolgen das ehrgeizige Ziel, die genetischen Fingerabdrücke aller Tierarten der Erde zu erfassen – die globale Online-Datenbank umfasst inzwischen über 160.000 Arten. Mehr Informationen zum Projekt gibt es auf www.barcoding-zsm.de. „Der genetische Barcode oder Fingerabdruck ist auch eine wichtige Basis für die evolutionsbiologische und ökologische Grundlagenforschung“, ergänzt Gerlind Lehmann, eine am Projekt beteiligte Wissenschaftlerin von der Humboldt Universität zu Berlin.

Heuschrecken sind Laien vor allem durch die sprichwörtlichen Heuschreckenplagen bekannt. Noch bis zur Mitte des 20. Jahrhunderts traten solche Heuschreckenplagen auch in Bayern auf. Heute sind jedoch viele der Arten, die Plagen verursachten, sehr selten geworden, z.B. die Europäische Wanderheuschrecke, die Italienische Schönschrecke oder die Wanstschrecke. Inzwischen sind Heuschrecken in Mitteleuropa auch nicht mehr als Schadinsekten anzusehen. Stattdessen machen sich viele Heuschreckenarten nützlich, indem sie Schadinsekten wie z.B. Blattläuse vertilgen – denn keineswegs  alle Arten sind Vegetarier – oder anderen schutzwürdigen Arten wie dem Weißstorch als Nahrung dienen. Heuschrecken reagieren sehr sensibel auf Veränderungen ihres Lebensraumes. Die Wissenschaftler machen für den Artenschwund vor allem die heutige Kulturlandnutzung verantwortlich: Immer  intensivere Landwirtschaft nimmt den Heuschrecken ihre Lebensräume, vor allem artenreiche Wiesen und Weiden. Auch die Individuenzahlen von Allerweltsarten haben drastisch abgenommen. Die erst kürzlich vom Bayerischen Landesamt für Umwelt aktualisierte Rote Liste der gefährdeten Arten bewertet bereits 45% der bayerischen Heuschreckenarten als bestandsgefährdet. Sechs Arten sind zumindest in Bayern schon vollständig ausgestorben. „Gerade Heuschrecken sind für den Naturschutz von besonderer Relevanz“, ergänzt Nikola Szucsich vom österreichischen Barcoding-Projekt ABOL, „denn sie sind typisch für selten gewordene Lebensräume, die auch viele andere bedrohte Arten beherbergen.“

Publikation: Hawlitschek, O., Morinière, J., Lehmann, G.U.C., Lehmann, A.W., Kropf, M., Dunz, A., Glaw, F., Detcharoen, M., Schmidt, S., Hausmann, A., Szucsich, N.U., Caetano-Wyler, S.A., Haszprunar, G. (2016): DNA barcoding of crickets, katydids, and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany, and Switzerland. Molecular Ecology Resources. doi: 10.1111/1755-0998.12638

Es wimmelt im Nationalpark Bayerischer Wald

Erzwespe Mymar pulchellum

Erzwespe Mymar pulchellum

„Die Artenfülle hat uns alle überrascht“, sind sich Prof. Dr. Gerhard Haszprunar, Generaldirektor der Staatli­chen Naturwissenschaftlichen Sammlungen Bayerns (SNSB), und Dr. Franz Leibl, Leiter der Nationalparkver­waltung Bayerischer Wald, einig. Im Rahmen eines weltweiten Kooperationsprojekts zur genetischen Erfas­sung von Insekten wurden im Bayerischen Wald während der Sommermonate nur eines Jahres insgesamt über 2.500 verschiedene Insektenarten genetisch erfasst – und das mit nur einer einzigen Insektenfalle.

Als Teil eines internationalen Insektenfang-Projekts (Global Malaise Programm, GMP) wurde im Sommer 2012 im Nationalpark Bayerischer Wald eine sogenannte Malaise-Falle aufgestellt. Malaise-Fallen sind zeltartige Gebilde, die sich besonders gut zur Erfassung der Biodiversität flugaktiver Insekten eignen. Während der nur fünf Monate dauernden Fangzeit wurden fast 30.000 Insekten gesammelt, die 2.530 Arten zugeordnet werden konnten. „Eine enorme Zahl, wenn man bedenkt, dass in den bisherigen Langzeiterfassungen für den Nationalpark erst 3257 Insektenarten sicher nachgewiesen wurden“, freut sich Dr. Franz Leibl, Leiter der National­parkverwaltung „Gerade im Hinblick auf das ansonsten weithin beobachtete Artensterben ist dieses Ergeb­nis sehr erfreulich. Nicht zu Unrecht gilt der Nationalpark Bayerischer Wald als eines der 30 Hotspot Gebiete für biologische Vielfalt in Deutschland.“ Schätzungen gehen derzeit von über 7.000 Insektenarten für den Nationalpark Bayerischer Wald aus.

Und eine weitere Überraschung zeigt die lange Liste der Arten aus dem Bayerischen Wald: Knapp die Hälfte der bestimmten Arten ist nur jeweils durch ein einziges Exemplar vertreten – sogenannte Singletons. „Dies zeigt uns deutlich, dass es weit mehr seltene Arten gibt, als bisher angenommen“, so Dr. Stefan Schmidt von der Zoologischen Staatssammlung München. Gerade solche Funde, wie die sehr seltene und mikroskopisch kleine Erzwespe Mymar pulchellum, freuen den Hautflügler-Experten Schmidt ganz besonders: „Es wird viel von Biodiversität geredet, dabei sind viele Arten vor allem kleinerer Insekten noch unentdeckt, und das sogar in unseren heimischen Wäldern“.

Initiator des internationalen Insektenfang-Projekts (Global Malaise Programm, GMP) ist der kanadische For­scher Paul Hebert, der sich zum Ziel gesetzt hat, weltweit alle Tierarten genetisch zu erfassen, und zu die­sem Zweck in Kanada ein großes Analyselabor aufgebaut hat. Im GMP wurde seit 2012 an 50 Standorten über den gesamten Erdball verteilt jeweils eine Malaise-Falle aufgestellt, deren Fangergebnisse nun kurz vor der endgültigen Auswertung stehen. Aus dem Projekt sollen insgesamt rund 1 Millionen Insektenproben genetisch erfasst werden. Zur Bestimmung der Arten werden sogenannte DNA-Barcodes erstellt: DNA-Sequen­zen, die für jede Art einzigartig sind. Spannendes Ziel des Ma­laise-Programms ist der globale Vergleich der Insektenvielfalt auf der Erde. Als optimaler Standort für Mitteleuropa wurde als naturnahe Waldlandschaft der Nationalpark Bayerischer Wald ausgewählt.

DNA-Barcoding: Wertvoller Zeitgewinn für Forensiker

Die Kaisergoldfliege Lucilia caesar gehört zu den Schmeißfliegen und besiedelt Leichen bereits in einem frühen Stadium (Foto: SNSB-ZSM).

Die Kaisergoldfliege Lucilia caesar gehört zu den Schmeißfliegen und besiedelt Leichen bereits in einem frühen Stadium (Foto: SNSB-ZSM).

Auf dem 13. Internationalen Meeting der European Association for Forensic Entomology in Budapest, Ungarn Ende Mai 2016 haben Wissenschaftler der ZSM erste Ergebnisse aus ihrer Kooperation mit dem  Kriminaltechnischen Institut des Bayerischen Landeskriminalamts  (BLKA) präsentiert. Die innovative Methode des DNA-Barcoding zur schnellen und exakten Artbestimmung könnte zukünftig eine wertvolle Ergänzung für die Arbeit der forensischen Entomologen sein.

Forensische Entomologie
Grundsätzlich machen sich die Forensiker der Kriminalpolizei die Insektenbesiedelung eines Leichnams zu Nutze. Die Artzusammensetzung der vorgefundenen Insektengesellschaft kann helfen, die Mindestliegezeit einer Leiche zu bestimmen. Das Alter der an einer Leiche aufgefundenen Insektenlarven lässt ebenfalls Aussagen über die Liegezeit zu. Nachteil der Methode: Die klassische Artbestimmung der Insekten anhand ihrer äußerlichen Merkmale ist in der Regel sehr zeitaufwändig. Gerade die Eier und Larven der relevanten Insektenarten lassen sich teilweise nur sehr schwer bestimmten Arten zuordnen. Häufig müssen sie erst im Labor erbrütet werden, was je nach Entwicklungsstand bis zu drei Wochen dauern kann.

DNA-Barcoding verschafft Zeitvorsprung
Genau hier kommen die Münchner Forscher ins Spiel: Seit 2015 arbeiten diese in enger Kooperation mit dem Sachgebiet 204 des Kriminaltechnischen Instituts des BLKA an einer genetischen Referenzdatenbank von forensisch relevanten Insekten. Die Datenbank umfasst inzwischen die DNA-Barcodes von rund 1000 Individuen mit 80 Arten, die von einem Versuch mit Schweinekadavern stammen, und wurde nun erstmals einem Praxistest unterzogen. DNA-Barcodes sind DNA-Sequenzen, die für jede Art einzigartig sind und so eine exakte Artbestimmung zulassen.

Für den Test stellte die Münchner Rechtsmedizin dem DNA-Barcoding Team der ZSM Insektenproben von 30 menschlichen Leichen zur Verfügung. In einer Vergleichsstudie wurden daraus zunächst die DNA-Barcodes von 400  von Hand vorsortierten Insekten erstellt. Demgegenüber bedienten sich die Münchner Forscher einer neuen Methode in der Sequenziertechnik: dem Next Generation Sequencing  – kurz NGS –, bei dem eine gemischte Massenprobe als Ganzes untersucht wird  – ohne mühsame und zeitaufwändige Vorsortierung. So lassen sich alle vorhandenen Arten aus einem „Arten-Gemisch“ in einem einzigen Analysegang nachweisen.

Mit durchschlagendem Erfolg: In nur 30 Arbeitsstunden konnten aus der Mischprobe 31 verschiedene DNA-Barcodes identifiziert und ebenso vielen unterschiedlichen Insektenarten zugeordnet werden. In Vergleich dazu entsprachen nur 13 davon den Referenzbarcodes aus den vorher von Hand, nach äußerlichen Merkmalen vorsortierten Exemplaren. Der Versuch zeigte deutlich das vielversprechende Potential der NGS-Methode: Sie könnte Forensikern ein wertvolles Werkzeug zur schnellen und zuverlässigen Artbestimmung an die Hand geben. „Die neue Methode  könnte uns einen wichtigen Zeitgewinn bei der Aufklärung von Tötungsdelikten verschaffen“ zeigen sich die forensischen Entomologen Dr. Frank Reckel und Dr. Jan-Eric Grunwald vom Kriminaltechnischen Institut des BLKA vom Ergebnis angetan.

Münchner Forscher wollen Sprung in die Praxis
Ziel ist nun der weitere Ausbau einer forensischen, genetischen Referenzbibliothek für Zentraleuropa. „Wir hoffen sehr auf weitere Kooperationen  mit anderen  forensischen Institutionen, insbesondere auf die Bereitstellung von DNA-Referenzen aus ganz Europa“ so ZSM Forscher Jérôme Morinière. In der nun zweiten Phase der DNA-Barcoding Projekte an der Zoologischen Staatssammlung München stehen praktische Anwendungen der Methode im Vordergrund.

Voucher specimens of IndoBioSys project repatriated to the Museum Zoologicum Bogoriense

In April and May 2016, the first two batches of vouchers, about 2,000 mounted and labelled specimens of insects, were repatriated to the collection of the Museum Zoologicum Bogoriense, Research Center for Biology – LIPI, in Cibinong, Indonesia. The specimens were processed through the DNA barcoding pipeline at the Zoologische Staatssammlung München (ZSM) as part of the IndoBioSys project – Indonesian Biodiversity Discovery System.

The project aims at developing new approaches to discover and describe Indonesian biodiversity. IndiBioSys is a G-to-G (government to government) initiative between Germany and Indonesia, funded by the German Federal Ministry of Education and Research (BMBF) and the Indonesian State Ministry of Research and Technology (RISTEK). The ZSM is, in cooperation with the Museum Zoologicum Bogoriense, establishing a novel high-throughput biodiversity discovery pipeline that is based on DNA barcoding as an efficient mean to assess the biodiversity of a region that is among the world’s top biodiversity hotspots.

DNA barcoding is a molecular tool for the fast and reliable identification of biological specimens and for the discovery of unknown species. Specimens of unknown identity are assigned a unique identifier based on DNA sequence data to make the species recognisable without the need for the immediate formal taxonomic treatment that is usually laborious and time-consuming. Traditional taxonomic practices have often been a major obstacle for the fast and efficient discovery and characterization of unknown biodiversity.

The returned voucher specimens will be permanently deposited in the MZB as Indonesia’s national zoological repository. Together with the data that are associated with the specimens (collecting data, sequences, photographs, biological data, etc.), the barcoded specimens represent a valuable source for research projects in the future.

Neue digitale Welten in der Zoologie

barcoding-zsmDie ZSM stellte am 15. Februar 2016 ihre neue Website ins Netz.  Diese ist unter der URL barcoding-zsm.de zu erreichen. Damit wollen die Wissenschaftler ihre Ergebnisse einem breiten Publikum präsentieren und Einblick in ihre aktuelle Arbeit geben. Die Website bietet in anschaulicher und übersichtlicher Form Informationen über sehr viele Arten im Barcoding sowie über bisher erfolgte praktische Anwendungen und Beispiele.

Beim DNA-Barcoding werden bestimmte Gensequenzen einer Tierart auf dem sogenannten Barcoding-Gen oder CO1-Gen erfasst und in einer Online-Bibliothek für Fachleute zur Verfügung gestellt. Diese genetischen Referenzdaten erlauben später eine eindeutige Bestimmung und Zuordnung unbekannter Organismen bis auf Artniveau. Dabei können nicht nur vollständige Tiere, sondern auch Fellreste, Fleischproben oder Larvenstadien von Insekten zweifelsfrei und sehr schnell bestimmt werden. Dies war bisher in vielen Fällen nicht oder nur mit sehr großem Aufwand möglich.

Das Projekt ist Teil des internationalen Barcoding-Projektes iBOL mit Sitz in Kanada. Dieses verfolgt das ehrgeizige Ziel, alle Tierarten weltweit genetisch zu erfassen. Die Münchener Forscher sind die deutschen Projektpartner von iBOL und untersuchen vor allem Tierarten aus Bayern sowie aus den Nachbarregionen.

Das DNA-Barcoding erlaubt viele praktische Anwendungsmöglichkeiten. So können landwirtschaftliche Schädlinge bereits in sehr frühen Larvenstadien erkannt  und damit rasch bekämpft werden. Ein spektakuläres Beispiel ist die Kirschessigfliege, die sich derzeit in Süddeutschland ausbreitet. Dieser gefürchtete Schädling wurde im Rahmen des Barcoding-Projektes erstmalig in Deutschland nachgewiesen. Ein weiterer Fall, der große Aufmerksamkeit erregte, betraf eine Tibet-Urlauberin. Diese brachte einen seltenen Parasiten aus dem Urlaub mit, der unter ihrer Haut sein Unwesen trieb. Mit Hilfe des DNA-Barcoding konnten die Experten diesen als Larve einer zum Glück harmlosen Yak-Dasselfliege identifizieren. Eine ähnliche Entwarnung konnte nach DNA-Analyse im Falle einer Käferlarve (Trichodes apiarius, “Bienenwolf”) gegeben werden, die sich am Hals eines Münchner Babys festgebissen hatte.

In weiteren Kooperationsprojekten untersuchen die Münchener Forscher Fisch- und Fleischproben im Rahmen der Lebensmittelkontrolle, erarbeiten eine Referenzbibliothek für relevante Insekten in der forensischen Entomologie, unterstützen die Nationalparks Bayerischer Wald und Berchtesgaden bei der Analyse von Massenproben durch Next-Generation-Sequencing (NGS) und bauen eine Datenbank mit Zootieren auf. Diese und andere Projekte sind ausführlich auf der neuen Website beschrieben. Die Webseite liefert darüber hinaus eine Gesamtübersicht über die einheimische Fauna mit Fotos und Verbreitungsdaten tausender Arten.

Außerdem kann das DNA-Barcoding auch für die wissenschaftliche Grundlagenforschung verwendet werden. So entdeckten die beteiligten Wissenschaftler bereits mehrere so genannte Zwillingsarten. Dabei handelt es sich um Arten, die sich hinter bereits bekannten Arten verbergen und nun auf genetischem Weg leichter entlarvt werden können. Verschiedene Publikationen in zum Teil hochrangigen wissenschaftlichen Zeitschriften dokumentieren diese Erfolge. Dabei sei vor allem das Barcoding der deutschen Wildbienen- sowie Käferarten erwähnt, welches den Forschern viel Anerkennung einbrachte.

ZSM runs DNA barcoding training at the MZB in Cibinong, West Java

IMG_20160127_105701

Staff members of the MZB participating in a training course on DNA barcoding.

The ZSM is currently running a training course at the Museum Zoologicum Bogoriense (MZB), Research Center for Biology – LIPI in Cibinong, Indonesia. The IndoBioSys coordinator at the ZSM, Bruno Cancian, is instructing Indonesian project partners to process voucher specimens according to a standardised protocol that was developed by the Canadian Centre for DNA Barcoding (CCDB) in Guelph, Canada. The procedure is part of a high-throughput workflow that was established at the ZSM as part of several large-scale DNA barcoding projects, including the Barcoding Fauna Bavarica and the German Barcode of Life projects. The optimised workflow enabled the ZSM to process nearly 200.000 specimens since the first barcoding projects commenced at the ZSM about 10 years ago.

IMG_20160127_111341

Participant of the training course processing specimens obtained from Malaise trap samples.

The preparation of voucher specimens for DNA barcoding involves image capture, recording of collecting data, sampling (leg picking), and transfer of samples to PCR plates that are subsequently processed at the CCDB. The data are maintained and managed using the Barcode of Life Database System as database management system that allows Indonesian and German project partners to access and analyse the data as soon as they are available, anywhere and at any time.

Specimens for barcoding were obtained during an expedition of Indonesian, German, and British specialists. Most of the material, primarily insects that comprise the largest number unknown organisms in the Indonesian fauna, was collected using Malaise traps. These traps are the most efficient method for obtaining a lot of insects in a very short time frame.

IndoBioSys project is a joint project of the ZSM in Munich and headed by the Museum für Naturkunde in Berlin on the German side, and the MZB/LIPI on the Indonesian side. The project is funded by the Federal Ministry of Education and Research and the Indonesian State Ministry of Research and Technology. It aims at establishing a novel high-throughput biodiversity discovery pipeline that is based on DNA barcoding as efficient means to assess the biodiversity of a region that is among the world’s top biodiversity hotspots.